Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hossein Aghabozorg, ${ }^{\text {a }}$ * Pouya Ghasemikhah, ${ }^{\text {a }}$ Mohammad Ghadermazi, ${ }^{\text {a }}$ Jafar Attar Gharamaleki ${ }^{\text {a }}$ and Shabnam Sheshmani ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran, and ${ }^{\text {b }}$ Department of Chemistry, Islamic Azad University, Shahr-e Rey Branch, Tehran, Iran

Correspondence e-mail:
aghabozorg@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.024$
$w R$ factor $=0.062$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Piperazinium bis(pyridine-2,6-dicarboxylato)mercurate(II) hexahydrate

The reaction of mercury(II) nitrate with the proton-transfer compound $\left(\mathrm{pipzH}_{2}\right)$ (pydc), where pipz is piperazine and pydcH H_{2} is pyridine-2,6-dicarboxylic acid, in aqueous solution leads to the formation of the title compound, $\left(\mathrm{pipzH}_{2}\right)[\mathrm{Hg}-$ (pydc) $\left.)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ or $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Hg}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The structure features six-coordinate Hg^{2+} (site symmetry 2) with a distorted octahedral geometry. Extensive intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding involving the $(\mathrm{pydc})^{2-}$ ligand, $\left(\mathrm{pipzH}_{2}\right)^{2+}$ (site symmetry 2) as a counter-ion and uncoordinated water molecules forms a three-dimensional network.

Comment

There are several studies on proton transfer between a carboxylic acid and a heterocyclic amine (Smith et al., 2001, 2005; Lynch et al., 1994). Continuing our research on protontransfer systems, we have found a certain route to combine a carboxylic acid with an amine and produce some water-soluble self-associating ion pair systems, which can react with metal ions and result in different complexes (Aghabozorg, Ghadermazi \& Ramezanipour, 2006; Soleimannejad et al., 2005; Moghimi, Aghabozorg et al., 2005; Moghimi et al., 2002, 2003; Aghabozorg, Akbari Saei \& Ramezanipour, 2005).

The resulting compounds with some remaining sites as electron donors can coordinate to many metallic ions (Aghabozorg, Nakhjavan et al., 2006; Aghabozorg, Ghadermazi, Manteghi \& Nakhjavan, 2006; Sheshmani et al., 2006; Moghimi, Sheshmani et al., 2005; Moghimi, Sharif et al., 2005; Aghabozorg, Moghimi et al., 2005; Aghabozorg, Dalir Kheirollahi et al., 2005; Moghimi, Alizadeh et al., 2005; Ramezanipour et al., 2005).

Here, we report the molecular structure of the title complex, $\left(\mathrm{pipzH}_{2}\right)\left[\mathrm{Hg}(\text { pydc })_{2}\right] .6 \mathrm{H}_{2} \mathrm{O}$, (I) (pipz is piperazine and pydcH_{2} is pyridine-2,6-dicarboxylic acid). The structure of (I) is shown in Fig. 1; selected bond lengths are given in

Received 16 July 2006
Accepted 14 August 2006

Figure 1
The structure of (I), with displacement ellipsoids at the 50% probability level. [Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.] All unlabeled atoms of the complex and the cation are obtained by applying symmetry operation i.

Table $1 . \mathrm{Hg}^{2+}$ (site symmetry 2) is six-coordinated by two $(\text { pydc })^{2-}$ groups, i.e. each (pydc) ${ }^{2+}$ coordinates through one N atom of the pyridine ring and two O atoms of $(\mathrm{COO})^{-}$fragments. Atoms N1 and N1 ${ }^{\mathrm{i}}$ of the two pydc fragments occupy the axial positions, and atoms $\mathrm{O} 2, \mathrm{O} 2{ }^{\mathrm{i}}, \mathrm{O} 3$ and $\mathrm{O} 3^{i}$ form the equatorial plane. The $\mathrm{Hg}-\mathrm{N}$ bond length is 2.198 (4) \AA and the $\mathrm{Hg}-\mathrm{O}$ distances are in the range 2.468 (3) -2.471 (3) \AA, which are similar to those of the $\left\{[\right.$ pyda $\cdot \mathrm{H}]\left[\mathrm{HgCl}(\text { pydc }) \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (pyda is pyridine-2,6-diamine) complex $[\mathrm{Hg}-\mathrm{N}=2.184$ (6) \AA A $]$ reported previously by our research team (Moghimi, Shokrollahi et al., 2004). The $\mathrm{N} 1-\mathrm{Hg}-\mathrm{N} 1^{\mathrm{i}}$ angle deviates slightly from linearity $\left[175.08(16)^{\circ}\right]$. The coordination geometry about the central atom is thus distorted octahedral. The charge of the anionic complex is compensated by a piperazinium ion as counter-ion. A remarkable feature in the crystal structure of compound (I) is the presence of a large number of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2), with $D \cdots A$ distances ranging from 2.734 (4) to 2.839 (4) А. A number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions were also identified in PLATON (Spek, 2003) between CH groups of piperazinium ions and (COO) $)^{-}$groups of (pydc) ${ }^{2-}$ fragments in addition to water molecules, although their chemical significance is uncertain. These interactions link the ions to form a three-dimensional network, as shown in Fig. 2. Dipoledipole and van der Waals interactions help to stabilize the packing in the crystal structure.

Experimental

The proton-transfer ion pair was prepared by a reaction between piperazine and pyridine-2,6-dicarboxylic acid. Starting with a 1:1 molar ratio of the reactants in THF, a puffy white precipitate was obtained. By recrystallization in an aqueous solution, pale-yellow crystals were obtained (Aghabozorg, Ghadermazi, Manteghi \& Nakhjavan, 2006). Aqueous solutions of proton-transfer compound
(pipzH_{2}) $(\mathrm{pydc})(1 \mathrm{mmol}, 0.253 \mathrm{~g}$) and mercury(II) nitrate monohydrate $(0.5 \mathrm{mmol}, 0.171 \mathrm{~g})$ were stirred at room temperature; the complexation reaction was complete after 30 minutes (opaque reaction mixture became transparent). Colorless crystals of compound (I) were obtained after four weeks at room temperature.

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Hg}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$Z=4$
$M_{r}=727.05$	$D_{x}=1.905 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, $P b c n$	Mo $K \alpha$ radiation
$a=13.444(7) \AA$	$\mu=6.15 \mathrm{~mm}^{-1}$
$b=8.377(4) \AA$	$T=120(2) \mathrm{K}$
$c=22.512(13) \AA$	Prism, colorless
$V=2535(2) \AA^{3}$	$0.19 \times 0.16 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.303, T_{\text {max }}=0.427$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0328 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$S=0.97$
2731 reflections
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=2.66 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Hg} 1-\mathrm{N} 1$	$2.198(4)$	$\mathrm{O} 2-\mathrm{C} 6$	$1.257(5)$
$\mathrm{Hg} 1-\mathrm{O} 2$	$2.471(3)$	$\mathrm{O} 3-\mathrm{C} 7$	$1.254(5)$
$\mathrm{Hg} 1-\mathrm{O} 3$	$2.468(3)$	$\mathrm{O} 4-\mathrm{C} 7$	$1.253(4)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.252(4)$		
$\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{N} 1^{\mathrm{i}}$	$175.08(16)$	$\mathrm{O} 2-\mathrm{Hg} 1-\mathrm{O} 2^{\mathrm{i}}$	$104.86(14)$
$\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{O} 3$	$71.55(10)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{O} 2$	$124.9(4)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{O} 3$	$111.75(10)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 1$	$116.8(4)$
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{O} 3$	$101.90(14)$	$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 1$	$118.3(3)$
$\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{O} 2$	$71.51(10)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{O} 3$	$126.2(4)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{O} 2$	$105.36(10)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 5$	$115.8(4)$
$\mathrm{O} 3-\mathrm{Hg} 1-\mathrm{O} 2$	$142.87(9)$	$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 5$	$118.0(3)$
$\mathrm{O} 3-\mathrm{Hg} 1-\mathrm{O} 2^{\mathrm{i}}$	$88.33(10)$		
$\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{O} 2-\mathrm{C} 6$	$-3.7(3)$	$\mathrm{Hg} 1-\mathrm{O} 2-\mathrm{C} 6-\mathrm{O} 1$	$-176.1(3)$
$\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{O} 3-\mathrm{C} 7$	$-12.1(3)$	$\mathrm{Hg} 1-\mathrm{O} 3-\mathrm{C} 7-\mathrm{O} 4$	$-167.1(3)$
Symmetry code: (i)-x+1,			

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1 S-\mathrm{H} 1 S C \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.92	1.84	2.753 (4)	169
$\mathrm{N} 1 S-\mathrm{H} 1 S D \cdots \mathrm{O} S^{\text {i }}$	0.92	1.99	2.765 (4)	141
$\mathrm{O} 1 S-\mathrm{H} 15 \mathrm{~B} \cdots \mathrm{O} 4^{\text {iii }}$	0.82	2.01	2.823 (4)	170
$\mathrm{O} 1 S-\mathrm{H} 15 A \cdots \mathrm{O} 4$	0.82	1.93	2.734 (4)	166
$\mathrm{O} 2 S-\mathrm{H} 2 S B \cdots \mathrm{O} 1 S$	0.82	1.95	2.756 (4)	165
$\mathrm{O} 2 S-\mathrm{H} 2 S A \cdots \mathrm{O} 1^{\text {iv }}$	0.82	1.99	2.805 (4)	174
$\mathrm{O} 3 \mathrm{~S}-\mathrm{H} 3 \mathrm{SB} \cdots \mathrm{O}^{\text {v }}$	0.82	2.04	2.839 (4)	164
$\mathrm{O} 3 \mathrm{~S}-\mathrm{H} 3 \mathrm{SA} \cdots \mathrm{O} 2 S$	0.82	1.97	2.792 (4)	174

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+\frac{1}{2}, y+\frac{1}{2}, z$; (iv) $-x+\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (v) $-x+1,-y+2,-z$.

The highest and deepest residual election-density peaks in the difference Fourier synthesis is located $0.89 \AA$ from Hg 1 ; it is probably due to considerable absorption effects which could not be completely corrected.

The H atoms of the NH_{2} groups and water molecules were found in difference Fourier syntheses $(\mathrm{N}-\mathrm{H}=0.92 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA)$. The $\mathrm{H}(\mathrm{C})$ atom positions were calculated $(\mathrm{C}-\mathrm{H}=0.95-0.99 \AA)$. All H atoms were refined in isotropic approximation in a riding model with the $U_{\text {iso }}(\mathrm{H})$ parameters equal to $1.2 U_{\text {eq }}$ of the respective carrier atom.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to Islamic Azad University, Shahr-e Rey Branch, for financial support of this work. The Teacher Training University is also gratefully acknowledged.

References

Aghabozorg, H., Akbari Saei, A. \& Ramezanipour, F. (2005). Acta Cryst. E61, o3242-o3244.
Aghabozorg, H., Dalir Kheirollahi, P., Moghimi, A. \& Sadr-Khanlou, E. (2005). Anal. Sci. 21, x79-x80.

Aghabozorg, H., Ghadermazi, M., Manteghi, F. \& Nakhjavan, B. (2006). Z. Anorg. Allg. Chem. In the press.
Aghabozorg, H., Ghadermazi, M. \& Ramezanipour, F. (2006). Acta Cryst. E62, o1143-o1146.

Aghabozorg, H., Moghimi, A., Manteghi, F. \& Ranjbar, M. (2005). Z. Anorg. Allg. Chem. 631, 909-913.
Aghabozorg, H., Nakhjavan, B., Ghadermazi, M. \& Ramezanipour, F. (2006). Acta Cryst. E62, m1527-m1529.
Bruker (1998). SAINT-Plus (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.
Lynch, D. E., Smith, G., Byriel, K. A. \& Kennard, C. H. L. (1994). Aust. J. Chem. 47, 1789-1798.
Moghimi, A., Aghabozorg, H., Soleimannejad, J. \& Ramezanipour, F. (2005). Acta Cryst. E61, o442-o444.
Moghimi, A., Alizadeh, R., Aragoni, M. C., Lipolis, V., Aghabozorg, H., Norouzi, P., Isaia, F. \& Sheshmani, S. (2005). Z. Anorg. Allg. Chem. 631, 1941-1946.
Moghimi, A., Alizadeh, R., Shokrollahi, A., Aghabozorg, H., Shamsipur, M. \& Shockravi, A. (2003). Inorg. Chem. 42, 1616-1624.
Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalai, F., Shamsipur, M., Yap, G. A. P. \& Rahbarnoohi, H. (2002). J. Mol. Struct. 605, 133-149.

Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M. \& Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902-908.

Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. \& Aghabozorg, H. (2005). Z. Anorg. Allg. Chem., 631, 160-169.
Moghimi, A., Shokrollahi, A., Shamsipur, M., Aghabozorg, H. \& Ranjbar, M. (2004). J. Mol. Struct. 701, 49-56.

Ramezanipour, F., Aghabozorg, H. \& Soleimannejad, J. (2005). Acta Cryst. E61, m1194-m1196.
Sheldrick, G. M. (1998). SADABS (Version 2.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheshmani, S., Aghabozorg, H., Mohammad Panah, F., Alizadeh, R., Kickelbick, G., Nakhjavan, B., Moghimi, A., Ramezanipour, F. \& Aghabozorg, H. R. (2006). Z. Anorg. Allg. Chem., 632, 469-474.
Smith, G., Hartono, A. W., Wermuth, U. D., Healy, P. C., White, J. M. \& Rae, A. D. (2005). Aust. J. Chem. 58, 47-52.

Smith, G., Wermuth, U. D. \& White, J. M. (2001). Aust. J. Chem. 54, 171-175.
Soleimannejad, J., Sharif, M., Sheshmani, S., Alizadeh, R., Moghimi, A. \& Aghabozorg, H. (2005). Anal. Sci. 21, x49-x50.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

